-
Saha, P. Sadi, M. S., Aranya, O. R. R., Jahan, S. and Islam, F., COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning. Informatics in Medicine Unlocked, 26, p. 100741, Jan 2021.
-
Saha, P. Sadi, M. S., and Islam, M. M., EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers.. Informatics in medicine unlocked, 22, p. 100505, Jan 2021.
-
Hassan, M.M., Sium, F.S., Islam, F., Choudhury, S.M., Plasmonic metamaterial based virus detection system: a review. arXiv:2012.00551, Jul 2020.
-
S. Bharati, P. Podder, M. R. H. Mondal, Hybrid deep learning for detecting lung diseases from X-ray images. Informatics in Medicine Unlocked, Elsevier, Volume 20, 2020,100391, Jul 2020.
-
Hasan, M. M. and Islam, M. S., Distributed denial of service attack detection in cloud computing using machine learning. BCS journal of Computer and Information Technology, vol.2, 2020, ISSN: 2664-4592 (print), 2664-4606 (online), Jun 2020.
-
M. R. H. Mondal, S. Bharati, P. Podder, P. Podder, Data Analytics for Novel Coronavirus Disease. Informatics in Medicine Unlocked, Elsevier, vol. 20, 2020, 100374, Jun 2020.
-
Zaman, S., Hassan, M. M., Hasanuzzaman, M., and Baten, M. Z., Coscinodiscus diatom inspired bilayered photonic structures with near-perfect absorptance accompanied by tunable absorption characteristics. Opt. Express 28, 25007-25021 , Jun 2020.
-
S. Bharati, P. Podder, and M. R. H. Mondal, Visualization and Prediction of Energy Consumption in Smart Homes. International Journal of Hybrid Intelligent Systems, IOS Press, Netherlands, 1 Jan. 2020: 81 – 97, DOI: 10.3233/HIS-200283., Jun 2020.
-
S. A. Munni, R. Islam and M. R. H. Mondal, Performance Evaluation of ASCO-OFDM Based LiFi. International Journal of Future Computer and Communication, Singapore, vol. 9, no. 2, pp. 33-39., Jun 2020.
-
S. Bharati, P. Podder, M. R. H. Mondal, and M. R. A. Robel, Threats and Countermeasures of Cyber Security in Direct and Remote Vehicle Communication Systems. Journal of Information Assurance and Security, MIR Labs, USA, vol. 15 (2020), pp. 153-164., May 2020.
-
S. Bharati, P. Podder, M. R. H. Mondal, Artificial Neural Network Based Breast Cancer Screening: A Comprehensive Review. International Journal of Computer Information Systems and Industrial Management Applications, MIR Labs, USA, vol. 12 (2020), pp. 125-137., May 2020.
-
F. Khanam, I. Nowrin, and M. R. H. Mondal, Data Visualization and Analyzation of COVID-19. Journal of Scientific Research and Reports, vol. 26, no. 3, pp. 42-52, Apr 2020.
-
Md Mahedi Hasan, and Hossen Mustafa, Multi-level Features Fusion for Robust Pose-based Gait Recognition using RNN. International Journal of Computer Science and Information Security, IJCSIS ISSN 1947-5500, Pittsburgh, PA, USA, Volume 18 No. 1, Feb 2020.
-
Masud, M. R. A. and Mondal, M. R. H., Data-Driven Diagnosis of Spinal Abnormalities Using Feature Selection and Machine Learning Algorithms. PLOS One, 15(2): e0228422; https://doi.org/10.1371/journal.pone.0228422, Feb 2020.
-
Sharmin, N., Karmaker, A., Lambert, W. L. L., Alam, M. S., and Shawkat, M. S. A., Minimizing the Energy Hole Problem in Wireless Sensor Networks: A Wedge Merging Approach.. MDPI Sensors 20, no. 1 (2020): 277, Jan 2020.
-
Azad, A. K., Alam, M. S., and Shawkat, S. A., DCDS-MAC: A Dual-Channel Dual-Slot MAC Protocol for Delay Sensitive Wireless Sensor Network Applications. Journal of Communications, Vol. 14, No. 11, Nov 2019.
-
Karmaker, A., Alam, M. S., and Hasan, M. M., An Energy Efficient and Balanced Clustering Approach for Improving Throughput of Wireless Sensor Networks. Wiley International Journal of Communication Systems, Oct 2019.
-
Kabir M. A., and Mondal M. R. H., Intensity Gradient Based Edge Detection For Pixelated Communication Systems. The Journal of Engineering, IET, DOI: 10.1049/joe.2019.0822, Sep 2019.
-
Rahman, J., Islam, M. Z., Lambert, W. L., Islam, M. S., and Alam, M. S., A Low Latency MAC Protocol for Underwater Sensor Networks Considering Bi-Directional Communication In Multi-Hop And Multi-Flow Scenarios. Springer Applied Science, Jul 2019.
-
Rahman, J., Islam, M. Z., Lambert, W. L., Islam, M. S. and Alam, M. S., A low latency MAC protocol for underwater sensor networks considering bi‑directional communication in multi‑hop and multi‑flow scenarios. S N Applied Sciences – A Springer Nature Journal, pp. 556-565, Jun 2019.
← Older Publications Newer Publications →